

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-1 (STRUCTURAL MECHANICS)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Review of Basic Concepts	4	4
2	Simple and Complex Stress, Strain	15	15
3	Stresses in Beams	10	10
4	Columns and Struts	4	4
6	Shear Force and Bending Moment	12	12
7	Slope and Deflection	10	10
8	Indeterminate Beams	10	10
9	Trusses and Frames	10	10
	Total Period:	75	75

Discipline: CIVIL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Gayatri Behera
Week	Class Day	Theory / Practical Topics
		1. Review Of Basic Concepts
	1 st	1.1 BasicPrinciple of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram
	2 nd	 Review Of Basic Concepts 1.1 BasicPrinciple of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram
1 st	3 rd	Review Of Basic Concepts Review of CG and MI of different sections
	4 th	Review Of Basic Concepts Review of CG and MI of different sections
	5 th	2. Simple And Complex Stress, Strain Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability
	1 st	Simple And Complex Stress, Strain Simple Stresses and Strains Types of stresses -Tensile, Compressive and Shear stresses
	2 nd	2. Simple And Complex Stress, Strain Simple Stresses and Strains Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear.
2 nd	3 rd	2. Simple And Complex Stress, Strain Simple Stresses and Strains Types of strains - Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc
	4 th	Simple And Complex Stress, Strain Simple Stresses and Strains Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants

	5 th	Simple And Complex Stress, Strain Application of simple stress and strain in engineering field Behaviour of ductile and brittle materials under distress Strain curve of a ductile material	rect loads,
	1 st	 Simple And Complex Stress, Strain Application of simple stress and strain in engineering field Limit of proportionality, Elastic limit, Yield stress, I Breaking stress 	Ultimate stress,
	2 nd	Simple And Complex Stress, Strain Application of simple stress and strain in engineering field Percentage elongation, Percentage reduction in an of percentage elongation and reduction in area of cross section	rea, Significance
3 rd	3 rd	Simple And Complex Stress, Strain Application of simple stress and strain in engineering field Deformation of prismatic bars due to uniaxial load	I
	4 th	Simple And Complex Stress, Strain Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight	nt
	5 th	Simple And Complex Stress, Strain Complex stress and strain stresses and strains: Occurrence of normal and tangential stresses.	Principal S
4 th	1 st	Simple And Complex Stress, Strain Complex stress and strain Principal stress and Principal Plane	Concept of
	2 nd	Simple And Complex Stress, Strain Complex stress and strain minor principal stresses and their orientations	Major and
	3 rd	Simple And Complex Stress, Strain Complex stress and strain and its application to solve problems of complex stresses	Mohr's Circle
	4 th	Simple And Complex Stress, Strain Complex stress and strain and its application to solve problems of complex stresses	Mohr's Circle
	5 th	3. Stresses In Beams and Shafts Stresses in beams due to bending Bending stress in beams – Theory of simple bending – Assumption resistance – Equation for Flexure– Flexural stress distribution	ns – Moment of

	1 st	3. Stresses In Beams and Shafts Stresses in beams due to bending Curvature of beam. Position of N.A. and Controldal Axis. Florusal rigidity.
		Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus
	2 nd	3. Stresses In Beams and Shafts
		3.2 Shear stresses in beams distribution in beams of rectangular, circular and standard sections symmetrical
		about vertical axis
	3 rd	3. Stresses In Beams and Shafts
		3.2 Shear stresses in beams distribution in beams of rectangular, circular and standard sections symmetrical
5 th		about vertical axis
		3. Stresses In Beams and Shafts 3.3 Stresses in shafts due to torsion
	4 th	Concept of torsion, basic assumptions of pure torsion, torsion of solid and hollow
		circular sections, polar moment of inertia, torsional shearing stresses, angle of
		twist, torsional rigidity, equation of torsion 3. Stresses In Beams and Shafts
		3.3 Stresses in shafts due to torsion
	5 th	Concept of torsion, basic assumptions of pure torsion, torsion of solid and hollow
		circular sections, polar moment of inertia, torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
		3. Stresses In Beams and Shafts
	1 st	3.4 Combined bending and direct stresses
		Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections
	2 nd	3. Stresses In Beams and Shafts
		3.4 Combined bending and direct stresses Conditions for no tension, Limit of eccentricity, Middle third/fourth rule
		3. Stresses In Beams and Shafts
6 th	3 rd	3.4 Combined bending and direct stresses Core or
6		Kern for square, rectangular and circular sections, chimneys, dams and retaining walls
		3. Stresses In Beams and Shafts
	4 th	3.4 Combined bending and direct stresses Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining
		walls
		4. Columns and Struts
	5 th	Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio
	1 st	4. Columns and Struts
	-	Axially loaded short and long column, Euler's theory of long columns

	2 nd	Columns and Struts Critical load for Columns with different end conditions		
7 th	3 rd	4. Columns and Struts Critical load for Columns with different end conditions		
	4 th	5. Shear Force and Bending Moment Types of loads and beams Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support		
	5 th	5. Shear Force and Bending Moment Types of loads and beams Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction		
8 th	1 st	5. Shear Force and Bending Moment Types of loads and beams Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium		
	2 nd	5. Shear Force and Bending Moment Types of loads and beams Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium		
	3 rd	5. Shear Force and Bending Moment5.2 Shear force and bending moment in beamsShear Force and Bending Moment: Signs Convention for S.F. and B.M		
	4 th	5. Shear Force and Bending Moment 5.2 Shear force and bending moment in beams S.F and B.M of general cases of determinate beams with concentrated loads and udl only		
	5 th	5. Shear Force and Bending Moment 5.2 Shear force and bending moment in beams S.F and B.M diagrams for Cantilevers beams		
	1 st	5. Shear Force and Bending Moment5.2 Shear force and bending moment in beamsS.F and B.M diagrams for Simply supported beams and Over hanging beams		
	2 nd	5. Shear Force and Bending Moment5.2 Shear force and bending moment in beamsS.F and B.M diagrams for Simply supported beams and Over hanging beams		
9 th	3 rd	5. Shear Force and Bending Moment 5.2 Shear force and bending moment in beams Position of maximum BM, Point of contra flexure		

	4 th	5. Shear Force and Bending Moment5.2 Shear force and bending moment in beamsRelation between intensity of load, S.F and B.M.	
	5 th	5. Shear Force and Bending Moment5.2 Shear force and bending moment in beamsRelation between intensity of load, S.F and B.M.	
	1 st	6. Slope and Deflection Introduction nature of elastic curve (deflection curve)	Shape and
10 th	2 nd	6. Slope and Deflection Introduction nature of elastic curve (deflection curve)	Shape and
	3 rd	6. Slope and Deflection Introduction between slope, deflection and curvature (No derivation)	Relationship
	4 th	6. Slope and Deflection Introduction of slope and deflection	Importance
	5 th	6. Slope and Deflection 6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	
11 th	1 st	6. Slope and Deflection 6.2 Slope and deflection of cantilever and simply supported beams concentrated and uniformly distributed load (by Double Integratio Macaulay's method).	
	2 nd	6. Slope and Deflection 6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	
	3 rd	6. Slope and Deflection 6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	
	4 th	6. Slope and Deflection6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	
	5 th	6. Slope and Deflection 6.2 Slope and deflection of cantilever and simply supported beams concentrated and uniformly distributed load (by Double Integratio Macaulay's method).	

12 th	1 st	7. Indeterminate Beams Indeterminacy in beams, Principle of consistent deformation/cor	mpatibility
	2 nd	7. Indeterminate Beams Indeterminacy in beams, Principle of consistent deformation/con	mpatibility
	3 rd	7. Indeterminate Beams Analysis of propped cantilever	
	4 th	7. Indeterminate Beams Analysis of propped cantilever	
	5 th	7. Indeterminate Beams fixed and two span continuous beams by principle of superposit	ion
13 th	1 st	7. Indeterminate Beams fixed and two span continuous beams by principle of superposit	ion
	2 nd	7. Indeterminate Beams SF and BM diagrams (point load and udl covering full span)	
	3 rd	7. Indeterminate Beams SF and BM diagrams (point load and udl covering full span)	
	4 th	7. Indeterminate Beams SF and BM diagrams (point load and udl covering full span)	
	5 th	7. Indeterminate Beams SF and BM diagrams (point load and udl covering full span)	
	1 st	8. Trusses Introduction trusses, statically determinate and indeterminate trusses	Types of
14 th	2 nd	8. Trusses Introduction indeterminacy, stable and unstable trusses	degree of
	3 rd	8. Trusses Introduction indeterminacy, stable and unstable trusses	degree of
	4 th	8. Trusses Introduction of trusses	advantages
	5 th	8. Trusses 8.2 Analysis of trusses method (Method of joints, method of Section)	Analytical

	1 st	8. Trusses 8.2 Analysis of trusses method (Method of joints, method of Section)	Analytical
	2 nd	8. Trusses 8.2 Analysis of trusses method (Method of joints, method of Section)	Analytical
15 th	3 rd	8. Trusses 8.2 Analysis of trusses method (Method of joints, method of Section)	Analytical
	4 th	8. Trusses 8.2 Analysis of trusses method (Method of joints, method of Section)	Analytical
	5 th	8. Trusses 8.2 Analysis of trusses method (Method of joints, method of Section)	Analytical